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A Lattice Boltzmann Kinetic Model for Microflow
and Heat Transfer

C. Shu,1 X. D. Niu,1 and Y. T. Chew1

Received October 12, 2004; accepted July 22, 2005

In this paper, we propose a lattice Boltzmann BGK model for simulation of
micro flows with heat transfer based on kinetic theory and the thermal lattice
Boltzmann method (He et al., J. Comp. Phys. 146:282, 1998). The relaxation
times are redefined in terms of the Knudsen number and a diffuse scatter-
ing boundary condition (DSBC) is adopted to consider the velocity slip and
temperature jump at wall boundaries. To check validity and potential of the
present model in modelling the micro flows, two two-dimensional micro flows
including thermal Couette flow and thermal developing channel flow are simu-
lated and numerical results obtained compare well with previous studies of the
direct simulation Monte Carlo (DSMC), molecular dynamics (MD) approaches
and the Maxwell theoretical analysis.
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1. INTRODUCTION

As the development of micro electromechanical systems (MEMS), the flow
and heat transfer in micro devices have become an area that receives a sig-
nificant attention.(1−4) The mechanism of the microscopic flow and heat
transfer is quite different from that of macroscopic counterparts because
the characteristic length of the flow H is of comparable order of magni-
tude of the mean free path λ and the inter-molecular interactions are man-
ifested. The microscopic flows are usually characterized by a dimensionless
parameter–the Knudsen number Kn = λ

H
. Theoretically, when Kn > 0.01,

traditional hydrodynamic descriptions such as the Navier–Stokes (NS)
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equations and Fourier heat conduction equation are invalid and the solv-
ers of the full Boltzmann equation (BE)(5−7) and the particle-based meth-
ods such as molecular dynamics (MD)(8) and the direct simulation Monto
Carlo (DSMC)(9) are often used for numerical studies. However, the com-
putational effort of the MD and the DSMC is usually huge with the use
of most powerful supercomputer and the schemes used for solving the full
BE are complicated because it requires the integration of a six-indepen-
dent-variables function.

Recently, the lattice Boltzmann method (LBM) has received a consid-
erable attention by fluid dynamic researchers.(10−14) The guiding principle
of the LBM is to construct a dynamic system on a regular lattice involv-
ing a number of the single-particle distribution functions of fictitious par-
ticles on the links of the lattice. The particles then evolve in a discrete
time according to laws retaining the basic fluid principles of mass, moment
and energy conservation. Unlike the MD and DSMC methods, the num-
ber of particles distributed in the computational field in the LBM is not
related to the number of molecules. Therefore, the LBM is intuitively more
computationally efficient than the MD and DSMC methods. Furthermore,
since the LBM solver is based on a simple BGK collision approxima-
tion,(15) one avoids solving the complicated full BE. On the other hand,
the LBM is intrinsically kinetic because the BGK collision approxima-
tion essentially represents the physics of molecular interactions and the
equilibrium distribution function in it can be considered as an effective
equilibrium of the molecular motions. Hence it has a strong theoretical
foundation to be taken as an alternative to model the microscopic fluid
dynamic problems.

In this paper, we present a lattice Boltzmann BGK model for simu-
lating the micro flow and heat transfer. Our model is based on the classic
kinetic theory(16) and the thermal lattice Boltzmann method (TLBM).(17)

In the TLBM, the macroscopic velocity field and temperature field are
simulated by the density distribution function and a new internal energy
density distribution function, respectively. The difference of the present
model with the TLBM is that we redefine the relaxation times in terms
of the Knudsen number based on the kinetic theory,(16) and the LBM
theory.(13−17) On the other hand, in consistence of the kinetic theory, a
diffuse-scattering boundary condition (DSBC) for the LBM is presented
so that the particle–solid interactions manifested in the micro level are
reflected kinetically and the velocity slips and temperature jumps at walls
are captured correctly.

To show the validity of the present lattice Boltzmann BGK model in
simulation of the micro flows with heat transfer, a theoretical analysis of
the DSBC for a simple thermal flow is presented, and a two-dimensional



Lattice Boltzmann Kinetic Model 241

(2D) thermal Couette flow and a developing thermal microchannel flow
are studied using the Taylor series expansion and least square-based LBM
(TLLBM).(18) The TLLBM has been proven to be an efficient and accu-
rate solver for simulating the continuum flows with irregular grids.(19,20)

The results obtained are compared with theoretical solutions and compu-
tation results.

2. THERMAL LATTICE BOLTZMANN MODEL

The thermal lattice Boltzmann equation with BGK model(17) can be
written as

f̄α(�x + �eαδt , t + δt )= f̄α(�x, t)+ δt

τf +0.5δt

(f eq
α (�x, t)− f̄α(�x, t)), (1)

ḡα(�x + �eαδt , t + δt ) = ḡα(�x, t)+ δt

τg +0.5δt

(geq
α (�x, t)− ḡα(�x, t))

− τgδt

τg +0.5δt

fα(�x, t)hα(�x, t), (2)

where f̄α = fα − δt

2τf
(f

eq
α − fα), ḡα = gα − δt

2τg
(g

eq
α − gα) + δt

2 fαhα and hα =
(�eα − �u) · [−∇(P

ρ
)+ 1

ρ
∇ ·�+ (�eα − �u) · ∇ �u]; fα and gα are the density and

internal energy distribution functions, respectively, and gα = (�eα−�u)2

2 fα; f
eq
α

and g
eq
α are their corresponding equilibrium functions; τf and τg are the

relaxation times of the hydrodynamic and thermodynamic fields, respec-
tively; �eα is the lattice velocity, α is the lattice direction, δt is the time
interval. The macroscopic density ρ, velocity �u, internal energy ε and pres-
sure P can be computed by the conservation laws of mass, momentum,
energy and the equation of state,

ρ =
∑

α

f̄α, ρ �u=
∑

α

f̄α�eα; ρε =
∑

α

ḡα − δt

2

∑

α

f̄αhα; P = 2
D

ρε, (3)

where ε = DRT/2, T is the temperature and D is the dimension. In this
work, we only consider a two-dimensional (2D) problem as an example.
The equilibrium functions f

eq
α and g

eq
α with the 2D 9-bit discrete velocity

(D2Q9) mode(12,17) are written as

f eq
α =wαρ

[
1+ 3�eα · �u

c2
+ 9(�eα · �u)2

2c4
− 3�u2

α

2c2

]
, (4)
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geq
α =wαρε

[
2(�e2

α − �u2)

2c2
+3

(
3�e2

α

2c2
−1

)
�eα · �u
c2

+ 9(�eα · �u)2

2c4

]
, (5)

where c=√
3RT0 and T0 is the average temperature.

3. THERMAL LBM FOR MICRO FLOWS WITH HEAT TRANSFER

Theoretically, the lattice Boltzmann BGK model provides a better
framework to simulate the microscopic flows. Although the BGK model
seems to describe only weak departures from local equilibriums, it has
long been recognized(21) that such an approximation works well beyond its
theoretical limits as long as the relaxation time can be made to capture the
relevant physics.

3.1. Redefinition of Relaxation Times

In the Kinetic theory and the conventional lattice BE with BGK
model, the relaxation time τf and τg are linked to the viscosity and ther-
mal conductivity of fluid in the way that the correct hydrodynamics are
described.(5,13,16,17,22) However, to model the microscopic hydrodynamics,
the Knudsen effects should be considered.

From the kinetic theory,(5,16) we know that the collision frequency in the
BGK model can be written as P/µ for hydrodynamic field or 2P/5Rκ for ther-
modynamic field, where µ and κ are the viscosity and thermal conductivity of
fluid, respectively. This implies that τf and τg can be written as

τf = µ

P
= µ

ρc2
s

, (6)

τg = µ

Prρc2
s

, (7)

where cs is the sound speed, Pr (= µcp/κ) is the Prandtl number,
cp(= γR/(γ − 1)) is specific heat capacity and γ (=5/3 for a monatomic
ideal gas and 7/5 for a diatomic gas) is the heat capacity ratio of gas.

According to kinetic theory,(5,16,23) the Knudsen number can be writ-
ten as

Kn=
√

πγ

2
Ma

Re
, (8)
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where Re = ρU∞H/µ is the Reynolds number and Ma = U∞/cs is the
Mach number. For the D2Q9 model, cs is taken as c/

√
3 and c is usually

chosen as 1. Hence by combining Eqs. (6)–(8) we have

τf =
√

6
πγ

H ·Kn≈H ·Kn, (9)

τg = H ·Kn

Pr
. (10)

Equations (9) and (10) link the relaxation times in the LBM to the Knud-
sen number. These relations are critical for the micro flow simulation.

3.2. Diffuse Scattering Boundary Condition

The boundary condition is an important issue for the LBM and it has
been well discussed by different authors for microfluidic systems(24−26) and
for macroscopic flows.(27,28) In this work, a DBSC for the LBM to model
micro flows is derived following the well-known Maxwell hypothesis(29) to
capture the correct velocity slip and temperature jump at the wall.

Theoretically, the particle–solid interactions should be adequately
addressed when the particles impinge and emerge at solid wall surfaces,
and this issue should be traced to the kinetic theory. According to the
gas–surface interaction law of the kinetic theory,(16,23,29) a general bound-
ary condition reads

|(�ξ − �uw) · �n|f (�ξ)=
∫

( �ξ ′− �uw)·�n<0
|( �ξ ′ − �uw) · �n|�( �ξ ′ −→ �ξ)f ( �ξ ′)d �ξ ′, (11)

where �ξ ′ and �ξ are molecular velocities of the incident and reflected par-
ticles, respectively, �n is the inward unit normal vector of the wall and w

indicates the wall boundary. �( �ξ ′ −→ �ξ) is the scattering kernel stratifying
the normalization condition

∫

(�ξ− �uw)·�n>0
�( �ξ ′ −→ �ξ)d�ξ =1 ( �ξ ′ − �uw) · �n<0 (12)

and the reciprocity relation

|( �ξ ′ − �uw) · �n|f eq
w ( �ξ ′)�( �ξ ′ −→ �ξ)=|(�ξ − �uw) · �n|f eq

w (�ξ)�(−�ξ −→− �ξ ′) (13)
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if the surface is staying in local equilibrium at the wall temperature Tw.
There are some special models for the scattering kernel �( �ξ ′ −→ �ξ).(16,23)

The most well known one is Maxwell’s diffuse scattering model,(16) which
has the following form

�( �ξ ′ −→ �ξ)= 1

ρwRTw(2πRTw)−
1
2

[(�ξ − �uw) · �n]f eq(�ξ)|�u= �uw
, (14)

where f eq is the Maxwell distribution function. Physically, the Maxwell
diffuse scattering boundary condition assumes that a particle coming to
the solid wall forgets all information on its state before the collision occurs
on the wall, and then leaves the wall with the Maxwellian distribution
function.

Since the distribution function fα in the LBM is actually the projec-
tion of the continuous distribution function f (�ξ) in a finite dimensional
velocity space, and its equilibrium f

eq
α is simplified from the Maxwellian

equilibrium f eq(�ξ) using truncated Taylor series expansion,(13,17) Eqs. (11)
and (14) naturally leads to the following DSBC for the LBM:

|(�eα − �uw) · �n|fα =
∑

(�eα′− �uw)·�n<0

|(�eα′ − �uw) · �n|�f (�eα′ −→ �eα)fα′ , (15)

where �f (�eα′ −→ �eα) = AN

ρw
[(�eα − �uw) · �n]f eq

α with α′ and α are directions
of the incident and reflected particles, respectively. AN is a normalized
coefficient and can be obtained by satisfying Eqs. (12) and (13), which
guarantees no normal flow through the wall (�u · �n =∑

α fα(�eα · �n) = 0).
This coefficient is also dependent on the velocity model used in the LBM.
Equation (15) is just a velocity boundary condition in the LBM simula-
tion. It should be indicated that similar expressions to Eq. (15) were also
postulated by Gatignol(30) for discrete velocity models of the kinetic the-
ory and recently by Ansumali and Karlin(31) for the LBM.

In order to get the thermal boundary condition for the LBM, we
should bear in mind that the normal part of the energy flux (

∫ �ξ2

2
�ξf d�ξ)

is continuous at the wall. Using the defination of gα, we can obtain the
following thermal DSBC for the present LBM analogically from Eq. (11)

|(�eα − �uw) · �n|gα =
∑

(�eα′− �uw)·�n<0

|(�eα′ − �uw) · �n|�g(�eα′ −→ �eα)gα′ , (16)

where �g(�eα′ −→ �eα)= BN

ρwε
[(�eα − �uw) · �n]geq

α and BN is a normalized coeffi-
cient and can be obtained by

∑
α gα(�eα · �n)=0.
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4. THEORETICAL ANALYSIS OF THE DSBC

To show whether the proposed DSBC can correctly capture the veloc-
ity slips and the temperature jumps on the wall, theoretical analyses based
on a 2D constant density flow along an infinite plate with a constant
velocity U0 and a constant temperature T0 (therefore the internal energy
ε0 = RT0) are carried out in this part. The flow is assumed to be steady
and satisfies ∂u

∂x
= ∂v

∂x
= v = ∂T

∂x
= 0 (u and v are the x- and y- compo-

nents of the velocity u). Therefore, both the velocity and distribution func-
tions are only functions of the y-coordinate. Although this type of flow is
rather simple, the analyses based on it can provide us some basic theoret-
ical insights of the DSBC.

For the D2Q9 model,(12,17) and the horizontal wall boundary with
flow on its upside, Eqs. (15) and (16) can be written explicitly as

fα=2/3/4 = 6
ρw

f
eq
α=2/3/4(ρw,uw)(f6 +f7 +f8), (17)

gα=2/3/4 = 3
ρwε

g
eq
α=2/3/4(ρw,uw, εw)(g6 +g7 +g8). (18)

4.1. Velocity Slip Boundary Condition

From Eqs. (1), (3), (4), and (17), on the wall boundary, we obtain the
following equations:

f̄
j=1
0 = 4

9
ρ

(
1− 3

2

u2
j=1

c2

)
, (19a)

f̄
j=1
1 = 1

9
ρ

(
1+3

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (19b)

f̄
j=1
2 = τf +0.5δt

6τf

(
1+3

U0

c
+ 9

2

U2
0

c2
− 3

2

U2
0

c2

)
(f

j=1
6 +f

j=1
7 +f

j=1
8 )

− δt

72τf

ρ

(
1+3

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (19c)
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f̄
j=1
3 = 2(τf +0.5δt )

3τf

(
1− 3

2

U2
0

c2

)
(f

j=1
6 +f

j=1
7 +f

j=1
8 )

− δt

18τf

ρ

(
1− 3

2

u2
j=1

c2

)
, (19d)

f̄
j=1
4 = τf +0.5δt

6τf

(
1−3

U0

c
+ 9

2

U2
0

c2
− 3

2

U2
0

c2

)
(f

j=1
6 +f

j=1
7 +f

j=1
8 )

− δt

72τf

ρ

(
1−3

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (19e)

f̄
j=1
5 = 1

9
ρ

(
1−3

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (19f)

f̄
j=1
6 = δt

36(τf +0.5δt )
ρ

(
1−3

uj=2

c
+ 9

2

u2
j=2

c2
− 3

2

u2
j=2

c2

)

+τf −0.5δt

τf +0.5δt

f̄
j=2
6 , (19g)

f̄
j=1
7 = δt

9(τf +0.5δt )
ρ

(
1− 3

2

u2
j=2

c2

)
+ τf −0.5δt

τf +0.5δt

f̄
j=2
7 , (19h)

f̄
j=1
8 = δt

36(τf +0.5δt )
ρ

(
1+3

uj=2

c
+ 9

2

u2
j=2

c2
− 3

2

u2
j=2

c2

)

+τf −0.5δt

τf +0.5δt

f̄
j=2
8 , (19i)

where j =1 represents the wall boundary and j =2 is its neighboring layer.
From Eqs. (19a–i), one can easily prove the normal momentum ρvj=1 =0.
The tangential momentum ρuj=1 can be written as
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ρuj=1 = c(f̄
j=1
1 − f̄

j=1
5 + f̄

j=1
2 − f̄

j=1
4 + f̄

j=1
8 − f̄

j=1
6 ). (20)

Substituting Eqs. (19a–i) into Eq. (20), we can get

ρuj=1 = c

{
2
3
ρ

uj=1

c
+ τf +0.5δt

τf

U0

c
(f

j=1
6 +f

j=1
7 +f

j=1
8 )− δt

12τf

ρuj=1

c

+ δt

6(τf +0.5δt )

ρuj=2

c
+ τf −0.5δt

τf +0.5δt

(f̄
j=2
8 − f̄

j=2
6 )

}
. (21)

Applying the tangential momentum definition ρu at j = 2 in Eq. (21)
and noting f̄

j=2
1 − f̄

j=2
5 = 2

3ρ
uj=2

c
because of zero gradient flow along

x-direction assumed in this analysis, we have

ρuj=1 = c

{
8τf − δt

12τf

ρ
uj=1

c
+ τf +0.5δt

6τf

ρU0

c

+ τf

3(τf +0.5δt )

ρuj=2

c
− τf −0.5δt

τf +0.5δt

(f̄
j=2
2 − f̄

j=2
4 )

}
, (22)

which further yields

ρuj=1 = c

{
2
3
ρ

uj=1

c
+ δt

3(τf +0.5δt )

ρU0

c

+ τf

3(τf +0.5δt )

ρuj=2

c
− δt

6(τf +0.5δt )
ρ

uj=1

c

}
. (23)

Through simple algebraic operation for Eq. (23), the slip velocity on the
wall can then be obtained

Us =uj=1 −U0 = τf

δt

(uj=2 −uj=1). (24)

Making Taylor series expansion of uj=2 to the boundary and dropping the
subscript index, and using Eq. (9), we have

US =uw −U0 =Kn
∂u

∂n
+ Knδ

2
∂2u

∂n2
+· · · , (25)

which is exactly the same as the one given from the high-order velocity
slip model(23) if the neighboring layer to the boundary is set at one mean
free path of molecules away from the boundary.
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4.2. Temperature Jump Boundary Condition

For simplicity, we neglect the effects of the heat dissipation in the
following analysis. From Eqs. (2), (3), (5) and (18), on the wall boundary,
we obtain the following equations:

ḡ
j=1
0 = 4

9
ρεj=1

(
−3

2

u2
j=1

c2

)
, (26a)

ḡ
j=1
1 = 1

9
ρεj=1

(
1.5+1.5

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (26b)

ḡ
j=1
2 = τg +0.5δt

12τg

ε0

εj=1

(
3+6

U0

c
+ 9

2

U2
0

c2
− 3

2

U2
0

c2

)(
g

j=1
6 +g

j=1
7 +g

j=1
8

)

− δt

72τg

ρεj=1

(
3+6

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (26c)

ḡ
j=1
3 = τg +0.5δt

3τg

ε0

εj=1

(
1.5− 3

2

U2
0

c2

)(
g

j=1
6 +g

j=1
7 +g

j=1
8

)

− δt

18τg

ρεj=1

(
1.5− 3

2

u2
j=1

c2

)
, (26d)

ḡ
j=1
4 = τg +0.5δt

12τg

ε0

εj=1

(
3−6

U0

c
+ 9

2

U2
0

c2
− 3

2

U2
0

c2

)(
g

j=1
6 +g

j=1
7 +g

j=1
8

)

− δt

72τg

ρεj=1

(
3−6

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (26e)

ḡ
j=1
5 = 1

9
ρεj=1

(
1.5−1.5

uj=1

c
+ 9

2

u2
j=1

c2
− 3

2

u2
j=1

c2

)
, (26f)
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ḡ
j=1
6 = δt

36(τg +0.5δt )
ρεj=1

(
3−6

uj=2

c
+ 9

2

u2
j=2

c2
− 3

2

u2
j=2

c2

)

+τg −0.5δt

τg +0.5δt

ḡ
j=2
6 , (26g)

ḡ
j=1
7 = δt

9(τg +0.5δt )
ρεj=1

(
1.5− 3

2

u2
j=2

c2

)
+ τg −0.5δt

τg +0.5δt

ḡ
j=2
7 , (26h)

ḡ
j=1
8 = δt

36(τg +0.5δt )
ρεj=1

(
3+6

uj=2

c
+ 9

2

u2
j=2

c2
− 3

2

u2
j=2

c2

)

+τg −0.5δt

τg +0.5δt

ḡ
j=2
8 . (26i)

The internal energy ρε on the wall boundary can be written as

ρεj=1 =
8∑

α=0

ḡj=1
α . (27)

Substituting Eqs. (26a–i) into Eq. (27), we can get

ρεj=1 =
{

1
3
ρεj=1 + (τg +0.5δt )

τg

ε0

εj=1
(g

j=1
6 +g

j=1
7 +g

j=1
8 )− δt

6τg

ρεj=1

+ δt

3(τg +0.5δt )
ρεj=2 + τg −0.5δt

τg +0.5δt

(ḡ
j=2
6 + ḡ

j=2
7 + ḡ

j=2
8 )

}
. (28)

Applying the internal energy definition ρε at j =2 in Eq. (28) and noting
g

j=2
0 +g

j=2
1 +g

j=2
5 = 1

3ρεj=2, we have

ρεj=1 =
{

1
3
ρεj=1 + (τg +0.5δt )

3τg

ε0 − δt

6τg

ρεj=1

+ 2τg

3(τg +0.5δt )
ρεj=2 − τg −0.5δt

τg +0.5δt

(ḡ
j=2
2 + ḡ

j=2
3 + ḡ

j=2
4 )

}
,

(29)

which further yields
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ρεj=1 =
{

1
3
ρεj=1 + 2δt

3(τg +0.5δt )
ε0 − δt

3(τg +0.5δt )
ρεj=1

+ 2τg

3(τg +0.5δt )
ρεj=2

}
. (30)

Through simple algebraic operation for Eq. (30) and noting ε = RT , the
temperature jump on the wall can then be obtained

Ts =Tj=1 −T0 = τg

δt

(Tj=2 −Tj=1). (31)

Making Taylor series expansion of Tj=2 to the boundary and dropping the
subscript index, and using Eq. (10), we have

TS =Tw −T0 = Kn

Pr
∂T

∂n
+ Knδ

2 Pr
∂2T

∂n2
+· · · , (32)

which is similar to the one given from the high-order temperature jump
model(23) if the neighboring layer to the boundary is set at one mean free
path of molecules away from the boundary.

It can be seen from Eqs (25) and (32) that, to get the higher order
approximation, the slip velocity and jump temperature depend on both
Kn and δ. From the kinetic theory, Kn is related to the viscosity, and usu-
ally, δ is taken as the minimum mesh spacing. So, the slip velocity and
jump temperature depend on the viscosity and the grid resolution.

5. NUMERICAL SIMULATIONS

In order to validate the lattice BGK model presented above numer-
ically, a 2D thermal Couette flow and a developing thermal microchan-
nel flow are simulated. All simulations are based on the D2Q9 model. All
results presented in the following have been tested by grid-independence
study.

5.1. 2D Thermal Couette Flow

Considering a thermal Couette flow confined between two plates par-
allel to the x-axis at y =±H . The plates are moving oppositely with a con-
stant velocity U0 and having temperatures T0 at the lower plate and T1 at
the upper plate, respectively. The major control parameters are the Prandtl
number Pr measuring the moment to heat diffusivity and the Eckert num-
ber Ec = U2

0 /cv(T1 − T0) (if T1 > T0) measuring the kinetic to internal
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energy. In present work, we set Pr = 0.71 and U0 = 0.1. The DSBC is
used on the both plates after the stream process of the particles. Periodic
boundary conditions are used at the inlet and outlet. All simulations in
this part are based on a 31×31 uniform grid and all results presented are
normalized by U0, T0 and H , respectively.

Figure 1 shows velocity profiles between two plates at three different
grid numbers at Kn = 0.2. Obviously, all results are shown to be highly
consistent though the grid number changes. However, as shown in Fig. 1,
the present model does not capture the expected Knudsen layer (nonlin-
ear distribution) although the Knudsen number is considered in the pres-
ent model. The reason may be due to the fact that the Knudsen layer is
the region with high nonequilibrium, where the high-order hydrodynamics
such as stress tensors is dominated and the present model does not con-
sider it sufficiently. Figure 2(a) and (b) shows the normalized temperature
profiles of Kn=0.05, 0.1 and 0.3 with Ec=10 and Ec=2, 10 and 20 with
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Kn=0.1 between the plates, respectively. The Knudsen effects on the vis-
cous heat dissipation behaviors can be observed in Fig. 1(a). As shown in
Fig. 2(a) and (b), the temperature profiles between the plates are parabolic
and the obvious temperature jumps are found for all Knudsen numbers.
Due to rarefaction of the flow, the heat behavior is more demonstrated
with the increasing Ec (Fig.2 (b)). The velocity slip and temperature jump
can be seen in Fig. 3(a) and (b), which show variations of the dimension-
less slip length ξ = (Uw − U0)/

·
γ (

·
γ = ∂u/∂y) and temperature jump l =

(Tw −T0)/
·
θ (

·
θ =∂T /∂Y )) with the Knudsen numbers in the range of 0.01

to 1. Results obtained by the DSMC, MD and Maxwell theoretical anal-
ysis are also included in these figures to see the accuracy of the present
model. The DSMC and MD methods have been well established for accu-
rately modelling high-Knudsen-number flows.(28,32) Maxwell theory pre-
dicts that the slip length and temperature jump are about ξ =1.15Kn and
l = 2.26Kn.(28) As shown in Fig. 3(a) and (b), the present results are in
good agreement with those from the Maxwell prediction,(21) the DSMC
approach and MD method(32) in the slip flow regime (Kn � 0.1). As Kn

increases, the present results lie in between the results of the Maxwell the-
ory and those of the DSMC and MD simulations.

5.2. Thermal Developing Flow in Microchannel

The thermal developing flow in a microchannel is another test case
for the present lattice Boltzmann model. Here we consider a flow at Re=
0.01, which is confined between two parallel plates with length L and
locating at ±H/2 (L/H =20). Initially, the flow is assumed static with con-
stant temperature T0 and the plates are heated uniformly with a constant
temperature Tw (Tw =10T0). The Prandtl number is fixed as Pr=0.7. Dur-
ing simulations, a uniform velocity U0 =0.1 is imposed at the inlet of the
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microchannel and the variables at outlet are extrapolated from the interior
flow field. The DSBC is used on the plates for the density and inter-
nal energy density distribution functions. A nonuniform grid of 201×29
is used and the grid points are clustered near the wall and inlet of the
microchannel.

For the thermal developing flow problems in channels, friction, heat
and mass transfer are of most interest and they can be measured by the
local wall friction coefficient Cf (= µ(∂u/∂y)w

(1/2)ρu2
b

) and local wall Nusselt num-

ber Nu (= 2H(∂T /∂y)w
(Tw−Tb)

). Here ub and Tb are the bulk velocity and temper-

ature and u is the velocity component in the x-direction. Figure 4 shows
the effects of the inlet Kn on the friction coefficients and Nusselt numbers
along the channel. As shown in Fig. 4, increasing Kn causes Cf Re and
Nu decreased. The entrance region where the flow is developing is larger
for higher Kn due to the larger velocity slip caused. Table I compares the
values of Cf Re and Nu for different Knin with those roughly grabbed
from the figures presented by Kavehpour et al.(33) The first-order analyt-
ical prediction of Cf Re by Karniadakis and Beskok(23) is also included
for comparison. From Table I, one can see that the present lattice Boltz-
mann model gives a good prediction of the flow behaviors compared to
the works of Kavehpour et al.(33) and Karniadakis and Beskok.(23)
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Fig. 4. Effect of Knin on friction coefficient (left) and Nusselt number (right).

Table I. Comparisons of the Outlet Cf Re and Nu Obtained by Different Methods

Knin Cf [23] Cf [33] Cf (present) Nu [33] Nu (present)

0.015 22.02 21.9 21.69 7.4 7.48
0.03 20.34 20 19.81 7.0 7.07
0.046 18.81 18 18.11 6.6 6.63
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6. CONCLUSIONS

A lattice Boltzmann BGK model for simulation of the micro flow
and heat transfer has been presented based on the kinetic theory and the
TLBM. Following the kinetic theory, the relaxation times in the LBM
are linked to the Knudsen number. A diffuse scattering boundary condi-
tion for the velocity and temperature at the wall is also derived from the
kinetic theory. Theoretical analyses of the DSBC based on the D2Q9 dis-
crete velocity model for a simple 2D plane thermal flow have been pre-
sented, and our analytical results are similar to the high-order slip/jump
models of Beskok(23) if the neighboring layer to the boundary is set at one
mean free path of molecules away from the boundary.

Numerical simulations of the 2D thermal Couette flow with a ther-
mal gradient and the developing thermal flow in a microchannel are car-
ried out and the results are in good agreement with the previous studies.
The present studies show that the present method gives a good prediction
of the micro fluidic behaviors with thermal effects.
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